Process structure

In business and engineering, new product development (NPD) covers the complete process of bringing a new product to market. A central aspect of NPD is product design, along with various business considerations. New product development is described broadly as the transformation of a market opportunity into a product available for sale. The product can be tangible (something physical which one can touch) or intangible (like a service, experience, or belief), though sometimes services and other processes are distinguished from "products." NPD requires an understanding of customer needs and wants, the competitive environment, and the nature of the market. Cost, time and quality are the main variables that drive customer needs. Aiming at these three variables, companies develop continuous practices and strategies to better satisfy customer requirements and to increase their own market share by a regular development of new products.[citation needed] There are many uncertainties and challenges which companies must face throughout the process. The use of best practices and the elimination of barriers to communication are the main concerns for the management of the NPD.

New product development

  • Fuzzy front-end (FFE)
  • Product design
  • Product implementation
  • Fuzzy back-end

Fuzzy front-end (FFE)

Fuzzy front-end (FFE) is the set of activities employed before the more formal and well defined requirements specification is completed. Requirements speak to what the product should do or have, at varying degrees of specificity, in order to meet the perceived market or business need.

Product design

Product design is the development of both the high-level and detailed-level design of the product: which turns the what of the requirements into a specific how this particular product will meet those requirements. This typically has the most overlap with the engineering design process, but can also include industrial design and even purely aesthetic aspects of design. On the marketing and planning side, this phase ends at pre-commercialization analysis[clarification needed] stage.

Product implementation

Product implementation often refers to later stages of detailed engineering design (e.g. refining mechanical or electrical hardware, or software, or goods or other product forms), as well as test process that may be used to validate that the prototype actually meets all design specifications that were established.

Fuzzy back-end

Fuzzy back-end or commercialization phase represent the action steps where the production and market launch occur. The front-end marketing phases have been very well researched, with valuable models proposed. Peter Koen et al. provides a five-step front-end activity called front-end innovation: opportunity identification, opportunity analysis, idea genesis, idea selection, and idea and technology development. He also includes an engine in the middle of the five front-end stages and the possible outside barriers that can influence the process outcome.

The engine represents the management driving the activities described. The front end of the innovation is the greatest area of weakness in the NPD process. This is mainly because the FFE is often chaotic, unpredictable and unstructured. Engineering design is the process whereby a technical solution is developed iteratively to solve a given problem The design stage is very important because at this stage most of the product life cycle costs are engaged. Previous research shows that 70–80% of the final product quality and 70% of the product entire life-cycle cost are determined in the product design phase, therefore the design-manufacturing interface represent the greatest opportunity for cost reduction. Design projects last from a few weeks to three years with an average of one year. Design and Commercialization phases usually start a very early collaboration. When the concept design is finished it will be sent to manufacturing plant for prototyping, developing a Concurrent Engineering approach by implementing practices such as QFD, DFM/DFA and more.

The output of the design (engineering) is a set of product and process specifications – mostly in the form of drawings, and the output of manufacturing is the product ready for sale. Basically, the design team will develop drawings with technical specifications representing the future product, and will send it to the manufacturing plant to be executed. Solving product/process fit problems is of high priority in information communication design because 90% of the development effort must be scrapped if any changes are made after the release to manufacturing.

Modules

Conceptual models have been designed in order to facilitate a smooth process. The concept adopted by IDEO, a successful design and consulting firm, is one of the most researched processes in regard to new product development and is a five-step procedure. These steps are listed in chronological order: Understand and observe the market, the client, the technology, and the limitations of the problem; Synthesize the information collected at the first step; Visualise new customers using the product; Prototype, evaluate and improve the concept; Implementation of design changes which are associated with more technologically advanced procedures and therefore this step will require more time. One of the first developed models that today companies still use in the NPD process is the Booz, Allen and Hamilton (BAH) Model, published in 1982. This is the best known model because it underlies the NPD systems that have been put forward later. This model represents the foundation of all the other models that have been developed afterwards. Significant work has been conducted in order to propose better models, but in fact these models can be easily linked to BAH model. The seven steps of BAH model are: new product strategy, idea generation, screening and evaluation, business analysis, development, testing, and commercialization.